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The deformation and conditions for breakup of a single slender drop placed sym- 
metrically in a uniaxial extensional flow are examined theoretically. For the case of an 
inviscid drop in zero-Reynolds-number flow, Buckmaster (1 972) showed, using slender- 
body analysis, that the shape of the drop is given by r = sR(z) = a(1-  ( Z ( ~ ) / ~ V ,  where 
e = y/Gpl and y is the interfacial tension, G the strength of the extensional flow, p the 
viscosity of the suspending fluid and 1 the drop half-length; also v = tP - 1 ,  where P is 
the unknown constant pressure inside the drop rendered dimensionless with respect 
to  Gp. By requiring that R be analytic at z = 0, Buckmaster then concluded that v had 
to be an even integer and thereby obtained a countably infinite set of slender profiles 
for any (large) value of the flow strength G .  In the present work, the expression for R(z) 
shown above is obtained readily using the method of inner and outer expansions, the 
method failing when ( z I  < O(E) and v is not an even integer. Thus, in general, a new 
solution is needed to describe the shape within the ‘singular’ region IzI < O ( E ) .  The 
requirement that the two solutions match in their domain of overlap then leads to the 
conclusion that v can be either equal to 2 or greater than or equal to 3. However, 
a stability analysis reveals that only the solution with v = 2 is stable, and hence a 
unique shape exists. 

Next, drops of low viscosityp, = O(e2p) are examined in zero-Reynolds-number flow. 
Here, again, a unique solution is obtained according to which a steady shape cannot 
exist if (Gpaly) (pi/p)* > 0.148, where a E (3V/477)4 and V is the volume of the drop. 
This breakup criterion is identical to that found by Taylor ( 1  964). A similar analysis 
for the case of an inviscid drop in a flow with non-zero Reynolds number shows that 
drop breakup will occur if (Gpaly) (pay/p2)f > 0-284, where p is the density of the 
suspending fluid. Finally, when pi = O(t2,u) and inertial effects are neglected within the 
drop but retained in the surrounding fluid, the critical value of (Gpa/y)(pay/p2)) 
required for drop breakup is found as a function of the dimensionless group 

which depends only on the physical properties of the system and the size of the drop. 
These last two results are the first which take into account inertial effects in deter- 
mining the deformation and breakup conditions of a drop placed in a shear field. 

(PaY/P2)* ( P h i ) * ,  

1. Introduction 
It has been known for some time that, when freely suspended in a fluid of equal 

density undergoing steady shear, a single drop will deform into a steady non-spherical 
uhape, but that, under some conditions, drop breakup will occur if G, the strength of 

t Present address: Sun Oil Co., Marcus Hook, Pennsylvania. 
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Lhe applied rate of strain, is increased beyond a critical value Gc. The extent of this 
deformation and the point of breakup will depend on the type of shear flow generated 
in the experimental apparatus plus the three independent dimensionless groups : 
Gpa/y, A E pi/p and the particle Reynolds number Gpa2/p, where y is the interfacial 
tension, a is the radius of the equivalent sphere, i.e. a = (3 V/4n)* with V the volume of 
the particle, and p and pi are, respectively, the viscosity of the suspending fluid and 
of the drop. 

Quantitative experiments in a simple shear and in a hyperbolic flow have been 
reported by Taylor (1934), by Rumscheidt & Mason (1961), by Grace (1971) and by 
Torza, Cox & Mason (1 972) under conditions of vanishingly small particle Reynolds 
numbers, so that the number of independent dimensionless groups reduces to two, 
i.e. Gpa/y and A. Even in these simple cases, though, the behaviour of the drops was 
found to depend in a complicated manner on the nature of the experiment and on A. 
For example, it was determined that, in a simple shear, drops with a viscosity ratio h 
greater than about 4 retained a steady shape even when G was increased seemingly 
without bound, whereas in a hyperbolic flow the same drops broke up when Gpaly 
exceeded a value of approximately 0-4. On the other hand, when h 4 1, the drops 
became long and slender prior t o  breakup for both types of shear. This required 
relatively large strain rates, the critical value of Gpaly being proportional to A-066 in 
a simple shear? and proportional to  A-0'l6 in a hyperbolic flow (Grace 1971). No corre- 
sponding experiments appear to have been performed in which the applied shear is of 
a more general type or in which the particle Reynolds number lies beyond the creeping- 
flow regime. 

This deformation of individual drops, as well as the maximum rate of strain that 
they are able to sustain before they will break (or the maximum size that a drop can 
attain a t  a given rate of strain), has important implications in a variety of seemingly 
diverse topics, for example in the design of mixing devices for dispersing one liquid 
phase into another (Grace 1971) or in the rheology of emulsions (BarthBs-Biesel RS 
Acrivos 1973a). Thus there exists a need for a theory which can account quantitatively 
for the experimental observations referred to above and then be used to predict the 
behaviour of such drops under more general conditions. 

To date, theoretical studies on the subject have also been restricted to cases of 
vanishingly small particle Reynolds numbers. The analysis is most straightforward 
when the shear is weak, for then the drop is almost spherical and, when h < O( l), the 
solution to  the creeping-flow equations with the appropriate boundary conditions can 
be obtained via a regular perturbation expansion in the small parameter G,ua/y. (An 
analogous expansion in the small parameter h-l applies when h 1 and G,ua/y is 
O( l), but this case will not concern us here.) To O(Gpa/r) the drop is found to deform 
into an ellipsoid (Taylor 1932; Cox 1969) and hence such a first-order steady-state 
theory cannot account for the phenomenon of bursting. When the O(GpcE/y)z terms are 
included in the analysis, however, and the series is truncated a t  this point (BarthBs- 
Biesel & Acrivos 1973b), the resulting expression for the deformation suggests that no 
steady-state 8hape can be attained when Gpaly lies beyond a critical value which 
depends on h and on the form of the applied shear. According to this second-order 
analysis, therefore, the phenomenon of breakup is identified with the non-existence 

t The exponent was incorrectly stated as - 1.3 in Rarthi?s-Biesel & Acrivos (19733, p. 17). 
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FIUURE 1. The three regions outside a slender drop in an axisymmetric shear field: I, outer region, 

r = 0(1), z = O(1); II,innerregion,r = O ( E ) , Z  = O(l);III,singularregion,r = O ( E ) , Z  = O ( E ) .  

of a steady-state solution when Gpafy exceeds a critical value, rather than, as is com- 
monly the case in many branches of fluid mechanics, with the instability of the solution 
to the corresponding steady-state problem when the value of the appropriate dimen- 
sionless group, here Gpafy, lies beyond the critical point. 

Using this criterion and their solution truncated to 0 ( G , ~ a / y ) ~ ,  BarthBs-Biesel & 
Acrivos (19733) computed the limiting deformation as well as the critical value of 
Gpafy a t  breakup, and found that their predictions were generally in good agreement 
with the experimental data referred to earlier provided that h was not too small. On the 
other hand, as was mentioned earlier, the drops are observed to be long and slender 
prior to breakup when A < 1 (Grace 1971; Torza et al. 1972), and hence the theory by 
BarthBs-Biesel & Acrivos (1973 b ) ,  which expands the solution about the spherical 
shape and retains only two terms in the series, becomes correspondingly less accurate. 
In fact, in a t  least one case, that of an inviscid drop ( A  = 0) freely suspended in an 
extensional uniaxial straining flow, this theory fails in that it yields a finite critical 
value for Gpafy whereas, as we shall see below, inviscid drops can exist for all Gpafy. 

For drops of low viscosity, i.e. for h < 1, it  would seem much more promising, there- 
fore, to  develop a theory that would take advantage of the observed slenderness of the 
drop prior to  breakup, rather than to attempt an extension of the small deformation 
analysis to  higher order in Gpafy. This was perceived by Taylor (1964), who was 
apparently the first to propose using the technique of slender-body theory for this 
purpose and who, by means of an approximate but surprisingly accurate analysis, 
obtained a quantitative criterion for the maximum value of Gpafy for which a steady 
slender drop can exist under creeping-flow conditions. Recently, Buckmaster (1 972, 
1973) presented a mathematically systematic and detailed treatment of this general 
problem which led t o  a number of very interesting and significant results. 

22-2 
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In  the first of these papers, Buckmaster (1972) studied the deformation of an 
inviscid drop in an axisymmetric straining (extensional) motion and showed, using 
slender-body theory, that for large values of the shear rate the shape of the drop is 
given asymptotically by 

where r and z are, respectively, the radial and axial co-ordinates (see figure 1 )  rendered 
dimensionless with respect to I ,  the half-length of the drop, 6 (assumed small) is defined 
as y/G,ul and v = +P- 1, P being the difference between the constant pressure inside 
the inviscid drop and that of the undisturbed flow, both rendered dimensionless with 
respect t o  Gp. Of course, since P and therefore v are a priori unknown, the solution as 
given by (1.1) is incomplete and no further information on v can be obtained even when 
the analysis is extended to higher orders in 6 (Buckmaster 1973). By imposing the ad- 
ditional requirement that R(z) be analytic near z = 0,  however, Buckmaster concluded 
that v had to  be an even positive integer with v = 2 being the most probable choice 
since, among all such solutions, it  corresponds to thedrop with the smallest deformation. 
Indeed, by solving the creeping-flow equations for this case numerically, Youngren & 
Acrivos (1976) were able to confirm that, when an inviscid drop is progressively 
elongated from its initial spherical shape after a steady increase in the strength of the 
applied shear, its shape conforms asymptotically to ( 1 . 1 )  with v = 2. This numerical 
study was unable, however, to  yield any information concerning the branches of the 
solution associated with v = 4,6 ,  . . ., except, perhaps, that they could not be attained 
by any process in which the drop is continuously deformed starting from rest. 

At any rate, i t  is evident from (1 .1)  and from the numerical work of Youngren & 
Acrivos (1976) that, in the absence of inertial effects, an inviscid drop can in principle 
attain a steady shape when placed in an extensional flow, no matter how large the 
strength of the applied shear. However, when h is not identically zero but is chosen, 
for reasons given in 5 3, as O(e2),  Buckmaster (1 973) showed in agreement with Taylor’s 
1964) earlier result that the drop can still deform into a steady slender shape, but that 
steady solutions to the creeping-flow equations satisfying the relevant boundary 
conditions do not exist if G exceeds a critical value G,. We recall that this non-existence 
of steady shapes for G > G, is consistent with the findings of BarthBs-Biesel & Acrivos 
(19733) for the case h < O(1) and thus appears to  be a characteristic property of all 
single drops freely suspended in a steady shearing motion provided that the viscosity 
ratio h is non-zero. 

In  the present paper we shall examine in more detail the deformation of a single drop 
freely suspended in a steady axisymmetric straining (extensional) motion under 
conditions when the drop is slender. First of all, for the case h = 0,  we shall derive (1.1) 
using the method of inner and outer expansions, which, as will be seen, is much easier 
to  apply than the method employed by Buckmaster (1972). We shall show next that, 
in general, the inner solution, which leads directly to (i  . l ) ,  no longer applies within the 
singular region z < O(e),  where a different solution must be developed. The requirement 
that these two solutions match within the domain of overlap then provides a condition 
for determining v ,  which is found to be an even integer (although the proof is incom- 
plete for v 2 3). Thus, although we reach the same conclusion as Buckmaster (1972) 
concerning the permissible values of v, the arguments leading to the final result appear 
to be more convincing. 

r = eR(z)  = ( ~ / 2 v )  (1 - ( z ( ~ ) ,  (1 .1)  
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We shall next consider the stability of these solutions and shall show, m the basis 
again of the creeping-flow equations but with the time-dependent term retained in the 
kinematic condition, that they are all unstable except that for v = 2. Thus a unique 
solution to the original problem is shown to exist. Next we shall turn briefly to the case 
h = O(s2)  already treated by Buckmaster (1973). Our solution is the same as his, but 
by re-examining its implications, we shall arrive at  a somewhat different, and more 
correct, expression for the critical shear rate G, which, in fact, is identioal to that 
given by Taylor (1  964). 

Following this we shall extend our development to include the effects of inertia. 
This does not appear to have been done before. It is, however, an important point to 
consider, because drops of low viscosity become long and slender prior to breakup and 
hence the Reynolds number based on length could often be significant. First, we shall 
examine the case of negligible internal viscosity and density, i.e. that of a gas bubble, 
and obtain a solution, valid for all fluid Reynolds numbers, which is (asymptotically) 
exact provided only that the bubble is sufficiently slender. Again, as in the case of 
vanishing fluid inertia, the resulting expression for the shape of the bubble contains an 
unknown parameter v which can take on a countably infinite number of values. The 
latter are no longer even integers but depend on the Reynolds number. In view of our 
stability results for zero Reynolds number, however, we shall take it for granted that 
only the lowest branch of the solution, i.e. that corresponding to the smallest drop 
deformation, is stable. Here, though, in contrast to ( l . l ) ,  steady bubble shapes are 
possible only if the applied shear rate does not exceed a critical value G, for which an 
expression is given. Finally, an analysis will be presented for the case of an inertialess 
drop with viscosity ratio h = 0(e2) freely suspended in a fluid with non-zero Reynolds 
number, and again a critical shear rate G, will be shown to exist. 

It is felt, therefore, that the results to be presented below significantly extend our 
understanding of drop deformation and breakup and, for the first time, provide a 
quantitative measure of the effects of fluid inertia on this phenomenon. 

2. An inviscid drop ( A  = 0) in zero-Reynolds-number flow 
2.1. The flow in the inner region 

We consider an inviscid drop symmetrically placed in a uniaxial straining flow. If the 
velocity components in cylindrical co-ordinates (2, r, 4) are denoted by (u, v, w), the 
non-dimensional undisturbed velocity is 

(2.1) u(d = z ~ ( 0 0 )  = - l y  w ( 4  = 0. 
2 ,  

Also, the undisturbed pressurep(cO) will be set equal to zero. Initially, all distances will 
be rendered dimensionless by I, the unknown half-length of the drop, all velocities by 
GI, where G denotes the strength of the applied strain rate, and all stresses by Gp, where 
,u is the viscosity of the suspending fluid. Also, we let the equation for the shape of the 
drop be 

where R(z) is an O(1) quantity and E is a parameter proportional to the slenderness 
ratio of the drop, which we shall assume to be small. We shall further suppose that the 
Reynolds number of the motion is negligibly small, and hence that the creeping-flow 
equations remain valid throughout the flow field. 

Y = ER(z) ,  (2.2) 
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We shall develop our solution for small E by the method of inner and outer expansions, 
which has already been applied to zero-Reynolds-number flows past solid slender 
particles by Batchelor (1970) and, more recently, by Keller & Rubinow (1976). The 
analysis in the present case is particularly simple because, to a first approximation in E, 
an inviscid drop will alter the undisturbed velocity field only within the inner region 
(figure 1 ) :  z = O(l), r = O(B).  Noting further that within this inner region u = O(l), 
v = O(e) ,  8/82 = O(1) and a/& = O(I/e), we immediately conclude from the relevant 
creeping-flow equations that, again within the inner region, 

u = z + o ( l ) .  

Hence, from the continuity equation 

au 1 a 
ax rat- 
-+--(rv) = 0 

and (2.1), it follows that 
v = - Qr +e2A(z)/r, 

where the function A ( z )  is to  be obtained from the kinematic condition u.n = 0 at 
r = eR(z), with n the unit inward normal to  the surface. In view of (2.2)7 this condition 
is equivalent here to  v = ER‘U a t  r = ER, the prime denoting differentiation with 
respect to z, and therefore 

Using the above expressions for u and v in the equations of motion, we find that, t o  a 
first approximation, the pressure equals that of the undisturbed flow, here set equal to  
zero. Hence substituting (2.3) in the nornial-stress balance, which to this order of 
approximation is simply 

P being the unknown constant pressure within the drop divided by Gp and y being the 
interfacial tension, leads immediately to  

E = y/Gpl 

and zR’-vR = -*, Y 3 gP-I, (2.4) 

R = ( 2 ~ ) - ~ ( 1 -  IZI’), (2.5) 

with boundary conditions R( & 1) = 0. Clearly, the appropriate solution to (2.4) is 

which is seen to be identical to (1.1) and therefore to Buckmaster’s (1972) earlier result. 
How v is to be determined is not an easy question to answer. Buckmaster (1972) 

proposed setting v equal to an even integer, thereby rendering the expression (2.5) 
analytic for all - 1 < z < 1.  The possibility of v not being an even integer cannot, 
however, be immediately discarded for the following reason. The inner solution, on the 
basis of which (2.5) was derived, applies only within that region of the flow where 
u = O(l) ,  v = O(E) ,  z = O(1) and r = O(E) ,  i.e. close to  the drop. Thus, when z and r, 
and therefore u and v, are all O( 1)7 a different expansion will in general be required. 
We shall call this region the outer region (figure 1). In  addition, however, in view of 
(2.1) there exists yet st third region, to be referred to  as the singular region (figure l),  
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where z, r ,  u and v are all O(e) and where again the inner solution may no longer hold. 
To be sure, as will be shown later in this section, the inner solution applies for all 
- 1 < z < 1 when v is an even integer and, therefore, the singular region will be absent 
under these conditions. In  general, though, the approximations leading to  (2.4) fail 
when [ zI < O(e), and it becomes necessary to consider in detail all three regionst just  
defined and especially the flow in the singular region, which will play a crucial role in 
eliminating all non-even integer values of v, i.e. all solutions to (2.4) which are not 
analytic at the origin. 

Let us, then, re-examine the inner solution. In terms of the variables 
- 

z = z, F = r/e, u = u, v = v/e, 

the creeping-flow equations expressed in cylindrical co-ordinates become 

i a  au -- (fi)+z = 0)  
F a.T; 

with the following boundary conditions a t  F = R(x) : 
(a) the kinematic condition 

( b )  t.he zero-shear-stress condition 
V = uR‘, 

( 2 . 6 ~ )  

(2 .6b )  

( 2 . 6 ~ )  

( 2 . 7 a )  

(2 .7b )  

(e) the normal-stress condition 

e2RR11 ) ( 2 . 7 ~ )  
1 - - 

R{1+ e2R12)# ( - 1 + e2R”J 

I n  addition, we require that as F - t c o  the inner solution matches with the outer 
solution to  be presented shortly. 

Equations (2 .6 ) ,  subject to ( 2 . 7 a ,  b )  and the fact that the outer solution is in terms 
of the unstretched variable r rather than F, can be solved by means of a straightforward 
expansion in 8 the first few terms of which become 

p = c2 Z&(zRR”) log ( E F )  + F, ( z ) ]  + . . . , ( 2 . 8 ~ )  

( 2 . 8 b )  

t As is the case with the large majority of analyses involving slender bodies, a different expansion 
is required near the ends of the bubble, z = & 1. As shown by Buckmaster (1972), however, the 
indeterminancy in v cannot be resolved by considering the structure of the flow in this fourth 
region, which, being exponentially small, will not affect our solution to the order of accuracy to 
which it will be developed, i.e. to O ( @ ) .  

( d  

u = 2 + e“(f(2) log ( E F )  + P2(z)} + . . . , 
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where f ( 2 )  = 2RR' + z R ' ~  - zRR". 

The functions F,(z) and F2(z) are, however, unknown a t  this stage and must be obtained 
by matching the above with the appropriate terms of the outer solution. At any rate, 
to this order of approximation, the normal-stress balance ( 2 . 7 ~ )  becomes 

&'-vR = - & -  E 2 {log (eR) [5RR'2 + 2R2R"+ 2Rt3 +zRR'R"] 

(2.9) 
F R  d 

dz 
+ 2Rr2 + 2Rt3 - iR'2 - 4RR" + +-- + - ( F2 R)}, 

subject to the condition R( f 1) = 0. 
We now turn to  the problem of obtaining a solution in the outer region. 

2.2. The $ow in the outer region 
Within the outer region r = O( l ) ,  the effect of the slender drop on the flow is equivalent 
to  that produced by a line distribution of singularities along the portion of the z axis 
within the drop (Batchelor 1970). To first order, only force and mass singularities, i.e. 
Stokeslets and sources, are needed? and hence the representation of the flow field 
reduces to that given by Buckmaster (1972), viz. 

dt, s2 = ( z  - t )2  + r2, (2.10a) 

(2.10b) 

(2.10c) 

where $( t )  and g( t )  are, respectively, the unknown Stokeslet and source strengths and 
satisfy the conditions 

J: +(t)  dt = 0, /: $t)  dt = 0. 

These functions can be evaluated by matching (2.10) as r -+ 0 with the corresponding 
limits of (2.8) as i; -+ 00. Thus, on making use of the asymptotic forms of the integrals 
in (2.10) as r -+ 0 (Tillett 1970; Buckmaster 1972), we find that for O ( E )  < z < 1 

$ ( z )  = zRR", g(2) = & ~ ( z R ~ ) / ~ z ,  (2.11 a, b )  

+ g' (2)  (2 - log [4( 1 - z ~ ) ] }  + - [ g ( t ) - g ( 2 ) - g ' ( 2 )  ( t - z ) ] d t .  (2 .114  s' -1 Iz-tI3 z - t  
t This can be demonstrated by considering an expansion in the small parameter 6 of the exact 

integral expressions for u and p in terms of the axisymmetric force and velocity distributions 
at the int,erface. 
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Then, if we suppose that, to a first approximation (2.11 a ,  b )  apply even within the 
inner region 0 6 1x1 6 O(c) ,  Fl and F, are given in terms of R and z, so that by means of 
an expansion in 6 we can solve (2.91, which is equivalent to Buckmaster's equation 
(3.11), and thereby obtain, for any choice of v, R(z) to O(e2) with (2 .5 )  as the leading 
term. We therefore conclude that, as expected, the inclusion of higher-order terms in 
the solution for the flow field in the inner and outer regions will not resolve the 
indeterminacy in v if the possible existence of the singular region is not taken into 
account. 

2.3.  The$ow in  the singular region 

We now derive the solution in the singular region and show that this analysis provides 
the information necessary to determine v. To do this we must retain in (2 .9 )  terms such 
as $R", which will be as significant as O ( 1 )  terms when z is O ( E ) .  The leading-order 
solution in the singular region can be written down immediately by noting that when 
z is O ( E )  the drop is, to a first approximation, an infinite circular cylinder of radius 
€ 1 2 ~ .  The flow within this region is then given, again to a first approximation, by 

p = 0, u = z, v = - $r + e2/8v2r, (2 .12 )  

which is easily seen to satisfy the kinematic, zero-shear-stress and normal-stress 
conditions a t  r = E / ~ V  with P ,  the unknown constant pressure within the drop, set 
equal to  2 ( v +  1 )  as before. Moreover, the above matches with the inner solution. 

To obtain the next term in this expansion, we need to examine the expression for 
R ( z )  given by the inner solution when z -+ 0. As shown in appendix A [cf. (Aa) ] ,  the 
latter gives for the shape of the drop when v is not an even integer 

r / e  = R ( z )  = (2v ) - l+  R,(z) +e2Ra(z),  

where R,(z) is an even power series in z and 

where the coefficient a, is defined in (A 5). Clearly, the expression for R determined 
from the solution within the singular region must match with the above in the region 
of overlap. We further note, however, that to a first approximation the drop within the 
singular region is a cylinder of radius E / ~ v ,  and that higher-order terms in R will be 
obtained by linearization about this cylindrical shape. Consequently, the approximate 
terms in the solution which will match with R, and R, can be determined separately, 
a t  least to the next approximation. Now since R, is analytic, it can be continued to 
z = 0 without any difficulty; on the other hand, R, is not analytic at  z = 0 (for v is not 
an even integer) and must be matched with the corresponding solution that applies 
within the singular region. Therefore we need to construct only a solution within the 
singular region which matches with R,. 

To this end, we find it convenient to introduce the variables 

(z", P, p ,  E ,  6) = ( 2 ~ 1 ~ )  (z ,  r , p ,  u, v) (2.13) 

and to represent the surface of the drop by means of 

( 2 v l s ) r  = 1 + s ' 9 ( z " ) + 2 v ~ 2 R a ( z ) ,  (2 .14)  
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a@) -+ - (J2)/2v)”. (2.15) 

Then, in view of (2.12) and (2.14) and if we neglect, for the reasons stated above, the 
contribution arising from the term c2R,(z) in (2.14), we have for the pressure and for 
the velocity components 

p =€”@(‘ ) (2 ,P)+  ..., G =z+€”ZL( l ) ( z , i )+  ..., .i; = -$.(i.-l/i.)+e”v(’)(Z,i)+ ..., 
where p(l) ,  u(l) and v(l) satisfy the full creeping-flow equations (since all the terms are of 
the same order of magnitude) plus the following boundary conditions at  i = 1 : 
(a) the kinematic condition 

(b) the zero-shear-stress condition 

v(1) = d(ZR)/d2, ( 2 . 1 6 ~ )  

(c) t,he normal-stress balance 

(2.16b) 

( 2 . 1 6 ~ )  

with P E 2(v + 1)  +eYP1), where P is once again the as yet undetermined constant 
pressure within the drop. Also, we require that u(’) be odd in z“ and that p(l) and d1) be 
even, and that they all matech wit’li t,he corresponding terms of the inner and outer 
solutions in their respective domains of overlap. 

The solution of the above can be developed most conveniently by the method of 
Fourier transforms using the concept of generalized functions as described by Lighthill 
( 1  958). We find that 

p(I) = / o m d ( w )  K,(oP) cos (wz )  dw +po ,  (2.17a) 

(2.17b) dl) = {&?(w) KO(@?) + & d ( w )  iKl(wi)} sin (02) dw, SOm 
Q(1) = Jom{[B(w) +w1d(w)]Kl (w?)  + $.d(w)i .Ko(wi)}cus (w2)dw ( 2 . 1 7 ~ )  

which satisfy the creeping-flow equations plus the symmetry conditions about 2 = 0 
as well as the requirement that they do not increase exponentially as i. --f 00. Here p ,  
is an unknown constant pressure which we shall incorporate into P(l), KO and Kl are 
the modified Bessel functions of the second kind of order zero and one, respectively, 
and d ( w )  and $A?(@) are functions to be determined from the boundary conditions 
(2.16a, b ) .  When the resulting expressions are substituted into the normal-stress 
balance ( 2 . 1 6 ~ )  we obtain 

[ F l ( t + Z ) + q ( t - 2 ) ]  

where (2.18b) 

( 2 . 1 8 ~ )  
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The above can be solved implicitly under the condition that W be even in 2 to yield 
(writing A2 for 1 + 1/v) 

P(1) 4 * cos(wz“)cos(wt) 
W = VCOS(A~)-- 2 ( ~ + 1 ) + ; 1 ~  jo w2-AZ 

where 9 is an undetermined coefficient and the principal value of the integral is taken. 
We need to examine now whether (2.18 d )  can match as z“ -+ co with the form of the 
corresponding perturbation solutior, of (2.9) as z -+ 0. To begin with we note im- 
mediately that the latter cannot contain trigonometric functions. Therefore, since 
on application of Lighthill’s (1  958, p. 51) theorem concerning the asymptotic expres- 
sion of a Fourier transform we can show that the integral in (2.18) will not have a term 
O(cos A2) as 2 -+ co, we conclude that the coefficient 9 in (2.18) must be zero. Also, the 
constant term -P1) /2(v+ 1 )  can be eliminated from (2.18) by letting 

Bl(z”) = - (ZV)”{B(z”)+F1)/2V}, (2.19) 

where use has been made of Lighthill’s (1958) table 1 in evaluating the double integral 
of (2.18) when W is constant, specifically the expression 

/omcos (wt) dt = nS(w) .  (2.20) 

Thus the function Sl satisfies the integral equation 

which does not have any simple analytic solution. We can, however, study the 
asymptotic behaviour of the solution for large z“ by using the techniques presented by 
Lighthill (1958) and the fact that our solution must satisfy (2.15). We therefore 
assume that W, = IPI” as 151 +co and then compute from (2.21) the asymptotic form of 
B,(Z), which must match with the limit of the solution of (2.9). It is shown in appendix 
A that, for v + 2 ,4 ,  ..., such an asymptotic analysis of (2.21) yields only identities to 
at  least, O( I z “ l y - 2 ) ,  i.e., when the expression 

W, = (21”c1Iz”I”-”1og Iz“I +c, 12(”-2+2,  (2.22) 

where is O(Z”-~), is substituted into the integral equation (2.21), the coefficients c1 
and cz can be evaluated in terms of v and are found to be identical with the corre- 
sponding coefficients of t&e solution of (2.9) as z + 0. A closer look at  (2.21) and (2.22) 
reveals, however, that_ 9 is at most O( JZI”-4(log3)2), so that if 1 < Y < 3, v $; 2, the 
Fourier transform of Wexists in the ordinary sense. In fact, on substituting (2.22) into 
(2.21) and then taking the cosine transform of the resulting expression and using 
Lighthill’s (1958) table 1 where necessary, we obtain (cf. Appendix A) a first-order 
ordinary differential equation for 2, the Fourier cosine transform of &: 

$w%d$/dw + 9& = -sin (ivn) r ( v +  1 ) 9 ,  (2.23) 
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where 

and A(w) = log ( 2 / ~ )  - 0.577216 + V. 
This differential equation has a formal soh tion 

@ = sin(4vr) r(v+ 1)exp [ -! 6J a d w ]  2 9  

constant + IumW 2 exp [ / x g d t ]  Y ( x ) d x ] .  (2 .24)  

The homogeneous solution becomes O(eVu) for large w and must be eliminated since 
& must vanish as w -+ co since as 2" -+ 0, 5 is either O ( l ) ,  if v > 2 ,  or at most O(z"y-2), 
if v < 2 .  On the other hand, as w --f 0 Bhe particular solution has the limiting form 

2 = 2 sin (ivn) r ( v  + 1) w-(u+1)q(v), (2 .25)  

with (2 .26)  

The integral q(v)  was evaluated numer&ally for 1 < v < 3 and was found to be every- 
where positive, thereby implying that 9 is non-integrable unless, of course, v = 2 .  Thus 
no values of v are permissible in the range 1 < v < 3 except for v = 2 .  

The asymptotic form of 9, for v = 1 can also be obtained by taking the appropriate 
limits of ( 2 . 2 2 )  and (A ll), and is 

where h? = o ( l / l t l ) .  Again, however, t'he expansion given for 2 in ( 2 . 2 5 )  is not 
integrable, and hence v + 1. It should be noted though that the analysis developed 
above does not apply when v = 2 ,  as can easily be seen from ( 2 . 2 5 )  and the expression 
for c2 in (A 1 1 ) .  This case will be considered separately in detail. 

The possibility that 0 < v < 1 can similarly be excluded by repeating the steps 
s,hown above. Here, however, the analysis simplifies because it involves, in lieu of 
9, the Fourier transform of (~23'~ - (z"/"), denoted here by @, which exists in the ordinary 
sense and can be shown to satisfy 

& M d B / d w + 9 g =  -sin(+vr)r(v+ 1 ) 9 ,  

9 1 ( t )  It1 - l / l t l + 5 ,  

where 

The solution to the above which vanishes for w -+ co is 

9 = w - 1 - q z  + 8( v - 1) 3f + &( v + 1 )}. 
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whose limiting form as w 3 0 becomes 

with 

Again, though, this is an unacceptable result because it implies that &? is non- 
integrable, contrary to what is known from (2.22), the asymptotic form of 9, as 
IZI + 03, which matches with the corresponding solution of the inner equation (2.9) 
as z --f 0. 

Similarly, if 3 < v < 5, it is not difficult to  see that the remainder left upon sub- 
tracting the O(l."Jv-4 (log2")2), JZ1'-410gz" and 12"1v-4 terms from g i s  well behaved for 
large Z only if v = 4, and likewise for v = 6, 8, etc. Such an analysis is not required, 
however, because, as we shall see in the next section, all solutions to (2.4) with v > 2 
are unstable and therefore of no physical interest. 

On the other hand when v = 2 (similar results also hold for v = 4, 6, 8, etc.) the 
limiting forms of the outer solution (2.10) for small r near the mid-plane x = 0 are the 
same as the limiting forms of the inner solution (2.8) for small x .  Substituting (2.5) with 
v = 2 into ( 2 . 1 0 ~ )  and (2.11) gives 

s-2p = -:I1 dt(t-t3) (z-t)[(x-t)2+r2]-~, 
8 -1 

so 

lim {Iims-2p} = lim{-&[3(1 +r2)4-(2+3r2)log(r- l+r-1(1 +r2)*)]} = -$(log@+$). 
-0 *o r+O 

On the other hand, from the inner solution (2 .8a) ,  

1 t 2 - $  

r+O 8 - 1 l t - x J  
l i m r 2 p  = Q( 1 - 3x2) { - 21og QeF+ log (1 - x 2 ) } -  2 1  - dt, 

lirn {lims-2p} = - )(log &F+ Q). 
z+o r+O 

By similar methods we obtain 

lim {lim ( p ,  u, w)} = lirn {lim ( p ,  u, w)} 
r-to z+o a+o r-0 

(2.27) 

and that the normal-stress balance (2.9) also applies for all 1x1 2 0. Therefore (2.5) 
with v = 2 is uniformly valid for all 0 < IzI < 1 .  On solving (2.9) with v = 2 we obtain 
for the shape of the drop to  O(s2) 

r / e  = R = a( 1 - x 2 )  + &s2([plog E + &( 23 - 42 log 2)] 

+ x 2 [  -410gs-)(23-4810g2)-Qn2]+x4[~loge+~(23-5410g2)] 

- (A + 22 - s.9) log (1 - 9) + m 
n-2x2n+2}. (2.28) 

1 
Note that to O(e2) 

R(0) = 4 + &e2 lag E + &(23 - 42 log 2) e2, 

and hence that the asymptotic value R(0) = t is approached from below. Comparison 
of the above with figure 4 of Youngren & Acrivos (1 976) indicates, therefore, that the 
numerical results reported by these authors are somewhat inaccurate at large drop 
deformations. 
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We have thus shown that, when 0 < v < 3 but v + 2, a singular region z = O ( E )  

exists within which the solution to the appropriate flow equat,ions is not well behaved 
in the sense that it cannot match with the Corresponding inner solution in the domain 
of overlap of the two regions, and have anticipated a similar result for all v not equal 
to an even integer. On tho other hand, when IJ is an even integer the inner solution (2.9) 
is valid for all 0 < (21 < 1 and the singular region is no longer present; hence we con- 
clude that the only permissible choices for v are even integers. We have therefore 
recovered Buckmaster's (1972) result but the proof is much stronger. 

To a first approximation then, the shape of the drop is 

r = (s/2v)(1-zy), v = 2,4 ,6 ,8 ,  ..., E = y/G,ul, (2.29) 

from which the deformation relation 

where 

(2.30) 

(2.31) 

easily follows, a being the radius of the sphere with the same volume as the drop. It is 
evident from (2.30) that, according t o  a steady-state analysis based on the creeping- 
flow equations, an inviscid drop will extend indefinitely without breaking up when the 
shear rate is increased. As will be seen in $0 3 and 4, however, this is no longer the case 
when the viscosity of the fluid in the drop is finite and when inertial effects are taken 
into account. 

2.4. The stability of the solutionf- 

We have just shown that, to a first approximation, the shape of the bubble is given by 
(2.5) with v a positive even integer, alt1,ough we have not completely eliminated the 
possibility that v could take any value greater than or equal to 3. We shall now prove 
that all these shapes are unstable except for that corresponding to v = 2. 

Our analysis will again be based on the creeping-flow equations, with the inertial 
terms set identically equal to zero. The time-dependent term will, however, be retained 
in the kinematic condition and thus the system of equations and boundary conditions 
will simulate the time variation in the shape from some given initial state. 

We begin by noting that it is no longer convenient to retain I ,  the half-length of the 
bubble, as the characteristic length since in our time-dependent problem this quantity 
varies with time. A better alternative is to render all radial distances dimensionless 
with y/G,u, all axial distances with a(G,ua/y)2, the time with 1/G, and t o  denote the 
equation of the surface by r = R*(z, t )  rather than by eR(z). Since a is, by definition, 
the radius of the equivalent sphere, the constant-volume requirement becomes, in 
these new dimensionless variables, 

(2.32) 

where t is the dimensionless time and an asterisk denotes a time-dependent quantity. 
Also, the kinematic condition is 

at r = R*(z,t). 
aR* aR* 

v = 2- +- 
a2 at 

(2.33) 

t This analysis was suggested and partly developed by Dr E. J. Hinch of Cambridge University, 
to whom t,ho nuthors are grateful. 
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By repeating the steps in 8 2.1 leading to (2.4), it is not difficult to see that the equation 
for the shape of the bubble is 

where 

aR* . aR* 
-+z--v*R*= -4, R*(f l* , t )  = 0, at az (2.34) 

(2.35) 

the latter expression being obtained on multiplying (2.34) through by R*, integrating 
with respect to z from -1" to  I* and making use of (2.32). We have already shown 
[cf. (2.5), (2.30) and (2.31)] that a steady-state solution of the above, here denoted by 
R(z) with v the corresponding value of v*, is given by 

(2.36) 
where v = 2 or v 2 3. On then letting 

where the primes here denote small quantities, we obtain the small disturbance form 

R(z) = (2~)-1[1-  l ~ / u / P } ,  1 = Q(v+ 1) ( 2 ~ +  1)) 

R* = R+R', V* = v+v', 

of (2.34) and (2.35): 
- + z - - v R ' - ~ ( l - ! . $ )  8R' aR' = 0, 
at a2 2v 

where 

(2.37) 

(2.38) 

Therefore, on making use of the expression for 1 given by (2.36) and transforming 
co-ordinates from z to  x, we arrive a t  

together with the condition, on account of (2.32), that 

(2.40) 

Equation (2.39) can be solved by separation of variables; i.e. we let 

R' = egtf(x), (2.41) 

where, without loss of generality, we set 

On substituting (2.41) into (2.39) and solving the resulting ordinary differential 
equation, we obtain 

f ( x )  = c IxIy-"+--- I x I u  if c + v  and cr $: 0, (2.42) 
c - v  (T 

where, in general, the coefficient C is determined from (2.40), which becomes 

/;1(1-I.l",f(x)dX=o. (2.43) 

Equation (2.42) represents the even solution; another solution is given by 

(2.44) 
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where C, remains unknown. One eigenvalue u is obtained readily by setting C = ( 
in (2.42) and determining u from (2.43). The result is u = -8 for all v and thf 
corresponding eigenfunction is 

f ( x )  = -(V+*)-1+2jxly. (2.45) 

It is easy to show, moreover, that this is just the linearized form of the shape- 
preserving solution to  (2.34) and (2.35), subject to (2.32): 

R* = &(t) (1 - ( lx l / l * ) ”>,  
where R, and l*(t)  satisfy 

(2.46) 

(2.47) 

respectively. Thus, for any value of v, (2.5) is stable to the corresponding shape- 
preserving disturbance. 

On the other hand, to determine t.he remaining eigenvalues u, it is again necessary 
to examine the solution within the singular region already discussed in $2.3.  The 
analysis is straightforward, and as shown in appendix B, an equation similar to 
(2.18a) is obtained for 92’ (the perturbation in 9), which becomes 

In fact, the only difference between (2.48) and ( 2 . 1 8 ~ )  is in the inhomogeneous term. 
At any rate, upon separating variables as in (2.41) and retracing the steps in $ 2.3 we 
conclude that: 

( a )  Iff(%) is even, then v - -Q = 2 or 3 3, with u $: v and -Q + 0 [cf. (2.42)]. Therefore 
the steady solution with v = 2 is stable, whereas all other steady solutions with v 2 3 
(in fact, all solutions with v > 2) are unstable because the lowest eigenvalue is then 
v - 2, which is positive. 

( b )  If f ( x )  is odd [cf. (2.44)], consideration of (2.48) along the lines of $2.3  for 
functions 9 that are odd shows that v--Q = 1 is a possible solution but can be 
eliminated by a shift in the origin, whose location has been assumed fixed in deriving 
(2.37). 

Thus we conclude that the only choice of v which leads to a steady bubble shape 
for - 1 < z < 1 is v = 2. The problem as originally posed therefore has a unique 
solution. 

3. A viscous drop ( A  9 0) in zero-Reynolds-number flow 
We next consider the effect of the viscosity of the fluid inside the drop. Inertial 

effects are again assumed negligible so that the creeping-flow equations apply both 
inside and outside the drop. This case has already been studied by Buckmaster (1973) 
and hence we shall only briefly sketch the main steps of the analysis. 
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The dimensionless field equations for the exterior region are the same as those in 
$ 2 . 1 ,  while those for the interior region become 

( 3 . l a )  

( 3 . l b )  

( 3 . 1 ~ )  

where h is t,he ratio of the viscosity pi of the dispersed phase to that of the suspending 
phase, p. Since we already know, however, from the normal-stress balance for slender 
drops [cf. the expression following (2 .3 ) ]  that p is an O(1) quantity within the drops, 
(3 .1  a )  implies that  slender drops can exist only if h < 0 ( e 2 ) .  Thus we are led to consider 
the non-trivial case h = O(e2) ,  which implies that  

K2 G = O(1). (3 .2 )  

It immediately follows from ( 3 . 1 )  that to leading order in E the shape R depends only 
on z and on the dimensionless parameter K2, i.e. the equation for the drop interface is 

T = R(z;  K2) .  (3 .3 )  

Equating the volume tna3 of the equivalent sphere to that of the drop, 

Z37J1 ( B R ) ~  dz ,  
-1 

and again letting E = y/G,ul, we find that 

( / o l ~ ~ d z ) - l  = function of ~2 only. 
I 

$ --(y/Gp~a)~ = - (3.4) 

From the definition of $, K2 and E we can then form the dimensionless rate of strain 

’9 (Gpa/y)h* = (K2p2)-* (3 .5 )  

( 3 . 6 )  

and the dimensionless extension of the drop 

L = ( l /a)  A* = $9. 

Noting that p i s  a function of K 2  only, we can compute $ and therefore ’9 and L for any 
specified value of K 2 .  The deformation curve L ( 3 )  can then be readily obtained once 
R has been determined. 

Equations ( 3 . 1 )  for h = O(e2) have been solved by Buckmaster (1973) ,  who obtained 
the expression for the internal pressure field [his equation ( 1 3 ) ] :  

wherep(0) is the pressure a t  z = 0 inside the drop, with the pressure of the undisturbed 
flow field at infinity set equal to zero. Also 

u = 2(2?2/R2- I ) ,  ( 3 . 8 )  
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""(")" Y P  
FIGURE 2. The first two branches of the deformation curve for a drop with finite viscosity and zero 
inertial effects. -, stable drop deformation curve; - - -, reference curve for zero-viscosity case; 
_.-.-. , - +- +, unstable steady-state solutions; B, point of breakup; C, point at which the 
two branches join. 

which together with (3.7) is seen to satisfy, to O($), (3.1 a)  plus the boundary conditions 
of continuity of tangential velocity, u = z at F = R, continuity of shear stress, 
Aduldi; = O(e2) at F = R, and mass conservation, 

JoRuSdF = 0. (3.9) 

The flow outside the drop is unchanged, to this order or approximation, so that t.he 
normal-stress balance is just (2.4) withp(z) as given in (3.7) replacing the constant P. 
The resulting equation is then 

Zsds 
, v frp(0)- 1, R( 1) = 0, (3.10a) 

or upon differentiation 

22RR"+2RR'-22Rf2-R' = 8z/K2, R(0) = ( 2 ~ ) - 1 ,  R( k l )  = 0. (3.10b) 

Once again, we observe that the system is indeterminate because p(O), or equivalently 
R(O), is unknown a priori. By analogy to the case of an inviscid drop ( A  = 0) ,  though, 
wo can show that the normal-stress balance in a region very close to z = 0 is the same 
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as (2.16c), except that P1) is now a quadratic function of z. The solution of ( 2 . 1 6 ~ )  
is again very similar to (2.18) plus an analytic function; however, in view of the 
discussion following (2.12), this analytic portion of the solution can be considered 
independently of the non-analytic part, which satisfies an equation essentially iden- 
tical to (2.21). But, as we have shown, the latter does not possess a solution which 
will match with the solution of (3.10) as z 3 0, and hence we conclude that R, as 
determined from (3.10), must be analytic at z = 0. 

As with the earlier case h = 0, the solution of (3.10) is non-unique even if we require 
that it be analytic at z = 0. On account of the stability analysis in 5 2.4, however, we 
can take it for granted that, of all these possible solutions, only that with the lowest 
permissible value of v, i.e. that giving a drop shape with the least deformation, is stable. 
This solution has the two branches (Taylor 1964; Buckmaster 1973): 

R(z)  = *[ 1 + ( 1  - 64/K2)4] ( 1  - z2) ( 3 . 1 1 ~ )  

and R(z)  = Q[1- (1  - 64/K2)4] (1 - z2), (3.116) 

which evidently require that K 2  > 64. On substituting the above in (3.4)-(3.6) we 
obtain the deformation curve [equivalent to Taylor's (1964) equation (16)] 

(3.12) 

which is plotted in figure 2, the section ABC corresponding to ( 3 . 1 1 ~ )  and CD to 
(3.11 b) .  Along ABC the parameter K2 decreases monotonically from infinity to 64 then 
increases monotonically back to infinity along CD. 

We shall now prove that the steady-state solutions represented by the upper part 
of this curve, i.e. the section BCD, are unstable and therefore of no physical significance. 
Let us consider the time-dependent deformation of the drop. ?Vith the inertial terms 
again set equal to  zero everywhere, but with the time derivative retained in the 
kinematic condition, Buckmaster (1 973) has shown that the relevant mathematical 
system admits the shape-preserving solution 

R*(z, t )  = Ro(t) [l - z~/Z*~], 

where Ro(t) satisfies his equation (41), which, on account of the constant-volume 
requirement Ril* = &I,', 
can be recast as 

Gpa -A*- dlogl* = - h i - -  Gpa fi A+)4/ [ + f f;h+)3], 
(3.13) 

Y dt Y (20)i 

, t being the time rendered dimensionless with 1/G. Since, with reference to  figure 2 and 
(3.12), the right-hand side of(3.13) is negative within the region enclosed by the curve 
ABCDA and positive outside it, it is evident that only the steady-state solutions lying 
along the section A B  are stable to shape-preserving disturbances. Moreover, since the 
value of K2 at B is found to equal %fi, it  follows that the only solution of (3.10) with 
physical significance is given by (3.11 a )  with < K2 < co. Thus Buckmaster's (1  973) 
criterion for breakup (K2  = 64 a t  C in figure 2) is seen to lie outside the range cf stable 
solutions. 
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It is tempting a t  this stage to  identify B with the point of drop breakup since, 
according to  our analysis, for dimensionless shear rates exceeding the critical value 

G a  
Y 

g+ = &hi= 3 x 54/25 = 0.148... (3.14) 

a steady shape cannot exist. Before reaching this conclusion, however, i t  is necessary 
to establish that the solutions lying along the curve AB in figure 2 are stable to all 
disturbances and not only to those of the shape-preserving type. This can be achieved 
by means of a stability analysis similar to  that in $2.4. Only axisymmetric disturbances 
will be examined since these are believed to  be the least stable. 

Again, it is convenient to employ a non-dimensional set of variables which differs 
somewhat from that used up to now. As before, we let the characteristic time be 1/12; 
however we now choose the characteristic dimension in the radial direction to be equal 
to  ah), that in the axial direction to  be equal to ah-+ and, as in 0 2.4, denote the equation 
of the surface by r = R*(z,t)  rather than by ER. The equation for the drop shape 
then becomes 

a2R* aR*aR* a2R* aR* 1 aR* R* --- - +zR*-+- -2  - -- - 
azat ax at a22 az 2 9 ,  az 

which in a steady state can easily be shown to  reduce to (3.10b) when account is taken 
of the difference in the notation. 

Let R* = 4 x 54L-4( 1 - x2)  + R', (3.16) 

where the first term represents the steady-state solution, R' is a small perturbation 
from this steady shape and x = z / L .  On substituting the above in (3.15) we obtain, to  
first order in R', 

a2R' aR' PR' aR' 
( 1  - x 2 )  - + 2 ~ -  +x( 1 - x2)  - - 4xR'+ (1 + 3x3) - 

ax at at ax2 ax 

-a2) R'ds, (3.17) 
La aR' 32 L3 a ---=--- 

where '3 and L are related by means of (3.12), i.e. 

9 = (20)-3 L3/( 1 + +L3), (3.18) 

in which only the lower branch, i.e. that represented by the curve AB in figure 2, is of 
interest. 

As in $ 2.4 we let R' = eg t f (x ) ,  which on using (3.18) transforms (3.17) into 

x(l-x2)-+{~(1-x~)+1+3x2-2++Lqz+{2x(r-4x}f d2f df 
dx2 

= 32 (r - L3 r( 1 -s2)fds.  (3.19) 
5 ( l - x 2 ) 2  0 

Also, the constant-volume requirement becomes 

(3.20) 
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The solution of (3.19), with f (0) set equal to unity without loss of generality, is 

66 1 

2 - u + +%L3 
u - ZL3 

x2 + c { x 2 + P - ~  + . . .}, f = 1 +  (3.21) 

if CT $: $53 and CT + Z+$L3,  

where C is a constant of integration. With reference to our earlier analysis, however, 
and especially that in $2.4,  we require that (3.21) be analytic at  x = 0. This gives the 
following results: 

(a) If C = 0, the eigenvalue cris determined by applying (3.20) to (3.21), and leads to 

1 
g = -  (1 - 4L3} < 0 

2( 1 + QL3) 
for $9 < $9+, 

which, as expected, can also be obtained byJinearizing (3.13), the equation for the 
shape-preserving solution. 

(b) If C =/= 0, then, with n = 4,6,  ..., 
= -n+"3 5 +2,  

all of which are negative since, in view of (3.18), 

O < L 3 < $  for 0 < ' 3 < W  

We conclude therefore that, for 9 < 9f < 0.148 ..., the steady drop shape given by 
( 3 . 1 1 ~ )  is stable to all small axisymmetric disturbances and hence that the critical 
shear rate for drop breakup is correctly given by (3.14). At this critical value of 92, the 
dimensionless extension L equals 4-) r 0-63 and therefore, from (3.16), the slenderness 
ratio of the drop, i.e. the ratio of its radius at z = 0 to  its half-length, is equal to (5h) 4. 
However, since the present analysis remains accurate only if this slenderness ratio k 
O( 10-l) or less, we conclude that the criterion developed above for drop breakup should 
apply only if h < O( 

4. An inviscid drop ( A  =/= 0) in flow at non-zero Reynolds number 
It has already been remarked that, in view of the very substantial length that many 

drops attain prior to breakup, the particle Reynolds number may no longer remain 
small; hence inertia effects may become important and should be taken into account. 
In  fact we shall now show that, as was the case when the internal viscosity inside the 
drop was finite, the presence of inertia in the flow outside also facilitates the breakup 
process. 

Denoting by a s pG12/,u the Reynolds number based on the half-length of the drop, 
we notice that the Navier-Stokes equations admit an exact solution 

p = -$a(z"+ly2), u = 2, 2, = --ly 2 7  (4.1) 

which is just the impressed extensional flow. Then, provided that the drop is sufficiently 
slender, the flow outside remains essentially undisturbed, so that to leading order in 
E = y/G,ul the pressure just outside the drop becomes 

p = -1a22. 2 

The normal-stress balance is therefore, in lieu of (2.4), 

zR'-(u+&d)R = --+, R( & 1 )  = 0, Y = +P-1, 
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where P is again the constant pressure inside the drop. Obviously R depends only on 
the dimensionless parameter a and z, i.e. 

r = ~ R ( z ;  a). (4.3) 

In  terms of a, the radius of the equivalent sphere, we again obtain 

where /3 is a function of a only. By definition 

a E pQE2 - = ( y ) 5 r 3 ) / 3 2 ,  Gpa 
P 

which leads logically to the definition of the dimensionless rate of strain 

and the dimensionless extension of the drop 

(4.5) 

(4.6) 

(4.7) 

The deformation relation La(ga) can then easily be obtained once p(a) has been com- 
puted from the solution of (4.2). 

By analogy with the previous two cases we require that R, as determined from 
(4.2), be analytic at z = 0. As shown below, the solution of (4.2) near z = 0 can be 
decomposed into two parts, one of which is analytic a t  z = 0 while the other is pro- 
protional to xy,  where 11 = &P- 1 is, in general, not an integer. The coefficient of the 
zv term can then be made to  vanish by a proper choice of u and, as before, there are 
many such choices which will render R analytic at x = 0. However, in view of our 
earlier analysis, we shall take it for granted that only the solution corresponding to the 
lowest value of u thus obtained is stable and therefore of physical interest. 

We begin by expressing the formal solution to (4.2) as 

R = *zv exp ( &ccz2) t-v-1 exp ( - &t2) dt ( 4 . 8 ~ )  

(2 - u+ 0 ( v ,  a)}, (4.8b) 
z~ exp { - $a( 1 - z2 ) }  

2v( v - 2) 
+ 

where +... . 1 
The shape of the drop is therefore given by ( 4 . 8 ~ )  with u f a )  equal to any one of the roots 
of 0 = v - 2. It is easy to  show that the first; two roots lie between 2 and 4, the next two 
between 6 and 8, etc. 

The deformation curves corresponding t o  the first two roots are presented in figure 3. 
It is worth noting that a maximum shear rate exists. The first two branches (and also 
pairs of the higher-order branches) join smoothly to form a composite clover-shaped 
curve, which forpmall shear rates can be approximated by the corresponding reference 
curves (broken lines) for A = 0,  p = 0. The first branch doubles back on itself at 
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FIGURE 3. The first two branches of the deformation curve for a drop with finite inertial but zero 
viscosity effects. -, Stable drop deformation curve; -- -, reference curve for zero-inertia case; 
-._. , - + - + , unstable steady-state solutions; B, point of breakup; C, point at which tho two 
branches join. 

g$ = 0.284, L: = 2.37, v+ = 2.52, which corresponds to the condition a t  breakup, 
then stops a t  the point C a t  the top of the loop, where it is joined by the second branch. 
Again, on account of our earlier results, we shall suppose that the lower part of this 
curve, viz. the section AB, is stable and that the upper, viz the section BCD, is unstable. 
Also, as there are no steady solutions for ga > 9’:, we conclude that an inviscid drop 
in a flow at non-zero Reynolds number will break up when ga reaches the value 
92; = 0.284. 

At this critical value of ga, the dimensionless extension La is 2.37 and the corre- 
sponding slenderness ratio of the drop is 0.295(pay/,u2)8. However, since the analysis 
is valid only if the slenderness ratio is O(10-l) or less, we conclude that the above 
results should be valid only if (pay/,u2) < 0,165, or equivalently, if the Reynolds 
number based on a, the equivalent radius of the drop, is less than about 0.07. Under 
these limiting conditions, the Reynolds number based on I ,  the half-length of the 
drop, is, approximately, 1.6. 

5. An inertialess viscous drop in flow at non-zero Reynolds number 
This is in essence a composite of the two cases treated in $5 3 and 4 ,  and for A = O($) 

applies provided the ratio of the density of the fluid within the drop to  that of the 
surrounding medium is sufficiently small, i.e. for a gas bubble in a liquid. The flow 
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1 2 4 

FIGURE 4. The critical shear rate at breakup of a drop having zero density. -, drop; 
_ I _ .  , no inertial effects; ---, limit of zero internal viscosity. 

outside the drop impresses a pressure - &az just outside the interface while the flow 
inside generates another pressure profile 

The normal-stress balance therefore includes both terms. Thus 

and hence the shape of the drop is 
T = &(z; 01, K 2 ) .  

For prescribed values of a and K2, (5.1) can be solved for functions that are analytic at 
z = 0 by considering the behaviour of R near z = 0 and then obtaining a transcendental 
equation for v = v(a, K2) .  The two dimensionless strain rates 

can then be computed according to (3.7) and (4.6) and their ratio 

5 = gn/g  = (pay/,u2)+h-4 

defines a dimensionless group that depends only on the physical properties of the 
system. We can then vary a and K2,  which corresponds to the realization of various 
experiments, and obtain a number of points on a plot of gJa, K 2 )  us. 5. The envelope 
of these points then defines the critical shear rates g;(C) beyond which drops of any 
given 5 will break up (figure 4). 
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In  a typical experiment [ is fixed and the shear rate G is increased gradually until 
the drop breaks, thereby locating one point on the 9?:(6) curve. In  a theoretical 
analysis, however, the form of (5. l), which contains a, K2 and therefore the a priori 
unknown half-length of the drop I ,  is such that many different combinations of a and 
K 2  must be considered before the whole 9:($) curve can be generated. In  view of the 
excessive amount of computation that an exact analysis would entail, an approximate 
method was therefore devised which took advantage of the fact that the major 
contribution of the volume of the drop comes from the region of small z, where 
R = R(0) +O(z2) .  Consequently, the pressure field generated by the internal flow, 

was replaced by p ( 0 )  + 16v2zz2/K2, so that the equation for R became identical to that 
for an inviscid drop at non-zero Reynolds numbers, i.e. (4.2) with a replaced by 
a + 32v2/K2. For the case of zero inertia this met'hod yielded a critical shear rate which 
was within 1 yo of the exact answer. The approximation should of course improve when 
a is increased. Figure 4 depicts the results of such an approximate, but accurate, 
calculation. As expected, the critical shear rate tends to the limits 

0-148c as c+ 0 (p = 0 case), %-+I 0.284 as c-+ co ( A  = 0 case). 

In  fact, accuracy to within 10 % can be achieved if the actual S,'(<) curve is represented 
by its two asymptotes, which in principle can be obtained by performing only two 
experiments. 

In  order to complete this analysis, we should, of course, also consider the situation 
in which inertial effects are important within the drop as well, i.e. for a liquid drop 
suspended in another viscous liquid, but unfortunately we have been unable so far to 
obtain the solution for the corresponding profile owing to the complicated nature of 
the flow within the drop when the internal Reynolds number is large. Hence the 
breakup criterion for this case remains to be determined. 

6. Generalizations to other flow fields 
In  principle, the analysis developed so far could be extended to the case of a drop 

freely suspended in a non-axisymmetric linear flow, in particular a hyperbolic or a 
simple shear flow, for which, as mentioned in the introduction, experimental results 
are available when inertial effects are negligibly small. Such an extension is being 
developed, and in the meantime the early results (Hinch & Acrivos, unpublished) can 
be used to develop a qualitative theory whose predictions can be compared with 
experimental observations. 

We note first of all that the behaviour of a drop in the hyperbolic flow field whoso 
components with respect to Cartesian axes (2, y, z )  are 

u, = z ,  uy = -y, u, = 0 

should not differ greatly from that in the extensional flow considered so far. In fact, 
it can be shown that, if h = O(e2) with e = y/G,uZ, an analysis similar to that of 0 3 will 
apply except for the added, and very serious(!), complication that the shape of the 
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drop will depend now on the azimuthal angle 8, in addition to z. Nevertheless, the 
dimensional arguments leading to  (3.6)-(3.8) are still valid. Hence, if we assume that 
the deformation curve is qualitatively similar to that in figure 2, we conclude that the 
condition for drop breakup is, as in $3, 

( G p / y )  A* = constant. 

This prediction is in very good agreement with Grace’s (1971) experimental observa- 
tions, according to which, at the point of breakup, 

G,ua/y = 0.1A-016 for h < 1.0. 

From the theoretical point of view, the effects of inertia on drop breakup should also 
be similar to  those in the extensional A ow already considered in $ 5  4 and 5, but to date 
there are no experimental results to test our predictions. 

When the impressed flow is the simple shear 

u, = y, uy = 0, u, = 0 

and A < 1, the drop also deforms into a slender shape, more or less aligned with the 
undisturbed flow. By an order-of-magnitude analysis it can be shown that the small 
angle of inclination is of the same order as 8, i.e. proportional to the slenderness ratio, 
and hence the undisturbed velocity along the surface of the drop is everywhere O ( E ) ,  
rather than O( 1)  as in the cases dealt with so far. Consequently, the normal stress a t  
r = =eR is also O(E)  and therefore i t  follows from the normal-stress balance that 
e = (y/GpZ)b. Also, as before, h = O(e2). By repeating the dimensional arguments used 
above in the case of hyperbolic and of extensional flow, w0 then‘arrive at  the breakup 
criterion (Gpzly) hf = constant, 

which is in fair agreement with the corresponding expression 

(Gpz/y)  = 0*17h-055 

obtained by fitting Grace’s (1971) data for A < 0.1. 
We remark in passing that 90 fax we have considered the behaviour of only a single 

drop in the applied shear field. It is easy to see, however, that the analysis developed 
throughout the paper would apply equally well to a moderately concentrated suspen- 
sion (of the order of 10 % or less in volume concentration) provided that all the drops 
were slender and were separated from one another by a distance a t  least O ( E )  relative 
to their length. For, in that case, the inner region surrounding any one drop would be 
affected by neighbouring drops only through the fact that the presence of other drops 
alters the effective rate of extension which that one drop feels and hence the shape of 
its interface would be, to  leading order in E and for the given effecbive rate of extension, 
the same as that calculated here. 

The authors are grateful to  Mr H. P. Grace of the DuPont Company for lending them 
a movie on the experimental investigation of the drop breakup phenomenon and for 
sending them a copy of his unpublished report on the subject. Dr E. J. Hinch of 
Cambridge University suggested and partly developed the stability analysis of $2.4 
and also offered many valuable suggestions throughout the text. This work was 
supported in part by the National Science Foundation under grant NSF-Eng-74-23229, 
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and was completed while the senior author was in Cambridge, England, under a 
Guggenheim Fellowship. 

Appendix A. The shape of the liquid drop near z = 0 when v is not an 
even integer 

The shape of the drop R(z) in the inner region is determined by the normal-stress 
balance (2.9),  which can be solved by an expansion in the small parameter E .  Thus we 
write 

The leading term is simply given by (2.5),  i.e. 

R(") = ( 2 v ) i  ( 1  - I z ~ Y ) ,  ( A  2) 

while R(l) and R@) satisfy [cf. (2.9)] 

(Z d/dz - V )  (log ER('> + R(,)) = - {log (ER) [5RR'2 + 2R2R" + zRI3 + zRR'R"] 

+ 2RRr2 + 2Rf3 - fR" - +RR" + &F1 R + d(F2 R)/d~},,,(o), (A 3a) 

the right-hand side of which becomes, for v > 0 and --f 0, 

{log (BR) (2R2R") - &RR" + iFl R + RFL}E=E(o). (A 3b) 

Integration of ( A  3),  using the expressions ( A  17 a,  b )  for F, and F2 derived later on in 
this appendix, yields 

where a, = Iog 2 - 7 -  $(v- 1 ) -  +ncot (&rv) + v, ( A  5a) 

$(4 = d[log W l l d z ,  Y = - P(1)  ( A 5 b , c )  

and R, is an even power series in z. In  terms of Z = 2vz/s, ( A  4) less the analytic part R, 
then becomes 

R ( 2 ~ ) - 1 { 1 -  ( € / B Y ) "  [Z"+ V (  1 - V )  Z-'(logz"+ al)] + . . .}. (A 6) 

This expression for R must match with the function W, in (2.21) as Z + 00, i.e. 9, as 
determined from 

( A  7 )  

(A 8 )  
must tend to  

where 2 is o(Z"-~). 

integrals of the form 

B, = Iz"J"+c, Jz"J"-21og JZI +c,  1Z1"-2+2, 

Now, when ( A  8) is substituted into ( A  7), we encounter on the right-hand side 

/;cos(wZ)B(w) do cos(wt) )tl"-2i(log p p .  
l o m  
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When v is not an even integer, we can evaluate the inner integral from the formulae 
(Lighthill 1958, table 1) 

Jomlt~ucos(ut)dt = -sin (3 - r(v+i) lwl-y-1, (A I O U )  

7TV 
/om/t/--210g It1 cos (wt)dt = sin - r ( v -  1)  /wI-v+1{-log lwl +@(v- 1) + hn-cot (in-v). 

2 
(A l o b )  

The outer integration is carried out by expanding P ( w )  in an ascending power series 
in w .  This procedure, according to Lighthill (1  958), will give the asymptotic value of 
the integral for large z". Equating this to the asymptotic form of the left-hand side of 
(A 7), we then obtain the consistency relations for the unknown coefficients cl, c2, ..., 
which are easily found to be 

c1 = v ( 1 - v ) ,  c2=v(1-v)a1,  .... (A111 

Again we note that, since c2 is well behaved for v 3 1, (A 1 1 )  apply for all v > 0 except 
v = 2 ,4 ,6  ,.... 

Using these values for c1 and c2 and bearing in mind that 

2v R(2) - 1 = - €y{R1/(2Yjy + P(1)/2v}, 

we can see that the limiting form of the bubble shape in the inner region, as given by 
(A 8) ,  is identical to order €2 with the limiting form of the solution in the singular region, 
as given by (A 8), provided of course that v is not an even integer. 

We shall next derive (2.23)) which leads to the integral constraint on v. Using the 
same notation as in (2.23), we have 

+ c2 + L%} + corresponding term for 37 

= /omdW COS (wz") [ 1 - w2 logw- w2 y -log 2 -- ( A2 .l)1 

I1 x [ - s i n g )  qv+ l )w-+ l  

x 1  + cos (wz") (n2 - -@ [ 1 - w2 log 0 

+terms containing ~ - ~ + l ,  etc. +terms for g +  corresponding terms 

for Y.  (A 12) 
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The first set of terms cancel with the corresponding terms on the left-hand side of the 
equation, while the remaining terms become, after some rearrangement, 

1 - w21og w - 0 2  

+terms containing wV+l and 

+terms for LK 

Denoting the Fourier cosine transform of &?by &, i.e. 

(A 14a) Jom - 
A 

9 ( w )  = 9 ( Z )  cos (wZ) dz”, 

(A 14b) 

we can rewrite (A 13) in terms of to obtain 

+terms in ~ - ~ + l  , 1 
which on rearrangement gives (2.23). 

as z -+ 0, which are required to  obtain (A 4). We have from (2.5) and (2.1 1) that 
Finally, to  complete this appendix, we shall derive the asymptotic forms of Fl and F2 

$ ( z )  = zRR“ = - (IzIv-1- Iz12v-1) sgnx, (A 15) 

and hence from (2.11) that 

+ (SV)-’ [(3 - V) 12(z; v - 1) - 312(z; 2~ - I)], 
where 

(A17b) 

= z8 log [z”( 1 - 271 - 2z5[y + $( - s) + $( 1 + s) + n/sin TS] 

+s-l[P(l, -s; 1 -s; Z)+P(l ,  -s; 1 -s; -2)], (A 18a) 
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= zs log [9/( 1 - z2)]  - 2zS[y + +( - s) + +( 1 + s) - n/sin ns] 

+s-l[P(l, -8; 1-8; z ) - -P( l ,  -8; 1-8; - z ) ] .  (A 18b) 

The above are obtained by expressing I ,  (and similarly I,) as the sum of three integrals, 
i.e. 

The first two integrals can be readily evaluated while the third becomes 

= s-lP( 1,  - S; 1 - s; Z )  + zs[@( 1 )  - $( - s)] + zslog [ z / (  1 - 41, (A 20) 

where use has been made of formulae (3.194.1) and (9.132) in Gradshteyn & Ryzhik 
(1 965). 

The limiting forms of Fl and F, as x -+ O+ can then be readily derived from (A 15)- 
(A 17). 

Appendix B. The time-dependent equations in the singular region 

denote the shape of the interface by 
Since the equations will later be linearized about the steady-state solution, we shall 

R*(Z, t )  = Ro + W*(Z, t ) ,  (B la)  

where R, = R(O), W* = B(Z)+B’(Z,t). (B 1 b, c )  

Here W is the steady-state solution developed in 9 2.3 and 9‘ is the time-dependent 
deviation, assumed small compared with 92. (Primes below denote small departures 
from the steady-state values of the corresponding quantities.) 

The flow outside i: = R*(Z, t )  is governed by the creeping-flow equations, subject to 
the following boundary conditions: 

(a) that the solution in the singular region matches with the outer and the inner 
solutions in the appropriate overlap domain; 

( b )  the kinematic condition aR*/at = u, at P = R*; 
(c) vanishing shear stress urn = 0 a t  P = R*; 
( d )  that the normal-stress difference must be equal to the capillary pressure. 
To leading order, the above conditions give 

~ ( 0 )  = 2, &) = - i p  + R8/2i:, (B 21, (B 3 )  

(B4) ,  0 3 5 )  ug: = fTg = 0, P O )  = 2 + 1/R 0’ 

These, of course, are just the solutions corresponding to an infinite cylinder of radius Ro. 
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The next-order solution would provide us with the time-dependent information. 
We start with (b) ,  which is 

u at r‘ = R*, 
d R  

at 82 
- 0-- 

aR* -- 

or a g * / a t  = - g* + ~ ( 1 )  - z” aw*/az“, 

or v(1) = a(~:*)/az + a g * / a t .  (B 6a) 

w = a ( z r ) / a z  + a g ’ / a t .  

cg = 4 ag*/az“, 

The difference between (B6a) and ( 2 . 1 6 ~ )  gives the equation for the disturbance 
velocity (primed): 

Similarly, we can show that the shear-stress and normal-stress bala.nces are of the form 

(B 7 a )  

(B 6 b )  

The time-dependent disturbance quantities therefore must satisfy (B ?a)  and the 
following two boundary conditions (at r’ = 1): 

(B 7 b )  d;j1 = 4 d 9 ’ / a z ,  

Notice that (B7) and (2.16) are the same except for a time-dependent term in the 
kinematic condition. These equations can be solved by Fourier transforms, as before, 

which is effectively of the same form as (2.18d). 
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